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The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases.
This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of
enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms
of these enzyme classes are described, and information on how terpene synthase proteins mediate catal-
ysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are
described, including an analysis of the relationships between active site sequence and cyclization type
and a discussion of whether specific protein features might facilitate multiple product formation.
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1. Introduction

Terpenes are not only the largest group of plant natural prod-
ucts, comprising at least 30,000 compounds (Connolly and Hill,
1991), but also contain the widest assortment of structural types.
Hundreds of different monoterpene (C10) (Dewick, 1999), sesqui-
terpene (C15) (Fraga, 2006), diterpene (C20) (Hanson, 2000) and
triterpene (C30) (Connolly and Hill, 2005) carbon skeletons are
known. Natural products chemists have long marveled at the
ll rights reserved.

: +49 345 5527407.
halle.de (J. Degenhardt).
structural diversity of terpenes and speculated on its biosynthetic
basis.

The wealth of terpene carbon skeletons can be attributed to an
enzyme class known as the terpene synthases. These catalysts con-
vert the acyclic prenyl diphosphates and squalene into a multitude
of cyclic and acyclic forms. The chief causes of terpene diversity are
the large number of different terpene synthases and the fact that
some terpene synthases produce multiple products. This review
discusses the role of terpene synthases in creating terpene diver-
sity. We first present a current list of reported terpene synthases
and describe the evidence for their ability to form multiple
products. Next, we summarize current knowledge of the reaction
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Table 1
Monoterpene synthase genes isolated to date.

Gene bank accession no. Main product(s)a (%) Designationb Species Cyclization typec References

AAB71084 Myrcene (�100) Ag2 Abies grandis None Bohlmann et al. (1997)
AAB71085 (�)-b-Pinene (58) Ag3 Abies grandis 1–6, 2–7 Bohlmann et al. (1997)
AAB70707 (�)-Camphene (54) Ag6 Abies grandis 1–6, 3–7, H Bohlmann et al. (1999)
AAF61453 (�)-(4S)-b-Phellandrene (52) Ag8 Abies grandis 1–6, H Bohlmann et al. (1999)
AAF61454 Terpinolene (42) Ag9 Abies grandis 1–6, H Bohlmann et al. (1999)
AAB70907 (�)-(4S)-Limonene (�70) Ag10 Abies grandis 1–6 Bohlmann et al. (1997)
AAF61455 (�)-(4S)-Limonene (35) Ag11 Abies grandis 1–6 Bohlmann et al. (1999)
AAK83564 nd Similar to Ag3 Abies grandis Trapp and Croteau (2001)
AAK83565 nd Similar to Ag10 Abies grandis Trapp and Croteau (2001)
AAL17636 (+)-(4R)-Limonene (�100) ArLMS Agastache rugosa 1–6 Maruyama et al. (2002)
AAO41727 Myrcene (100) Ama1e20 Antirrhinum majus None Dudareva et al. (2003)
AAO41726 Myrcene (100) Ama0C15 Antirrhinum majus None Dudareva et al. (2003)
AAO42614 (E)-b-Ocimene (97) Ama0a23 Antirrhinum majus None Dudareva et al. (2003)
ABR24418 (+)-(3S)-Linalool (100) # AmNES/LIS-2 Antirrhinum majus None, $ Nagegowda et al. (2008)
AAO85533 (+)-(3S)-Linalool (100) At1g61680 Arabidopsis thaliana None, $ Chen et al. (2003)
NP_189209 b-Myrcene/(E)-b-Ocimene At3g25810 Arabidopsis thaliana None Chen et al. (2003)
AAN65379 (E)-b-Ocimene (94) AtTPS03 Arabidopsis thaliana None Fäldt et al. (2003b)
AAG09310 Myrcene (56) AtTPS10 Arabidopsis thaliana None Bohlmann et al. (2000)
AAU01970 1,8-Cineole (52) AtTPS-Cin Arabidopsis thaliana 1–6, 3-O-7, $ Chen et al. (2004)
AAF13357 (�)-(3R)-Linalool (100) QH1 Artemisia annua None, $ Jia et al. (1999)
AAF13356 (�)-(3R)-Linalool (100) QH5 Artemisia annua None, $ Jia et al. (1999)
AAK58723 (�)-b-Pinene (94) QH6 Artemisia annua 1–6, 2–7 Lu et al. (2002)
ABI21837 (�)-(4S)-Limonene (�90) CsTPS1 Cannabis sativa 1–6 Günnewich et al. (2007)
ABI21838 (+)-a-Pinene (�85) CsTPS2 Cannabis sativa 1–6, 2–7 Günnewich et al. (2007)
CAD29734 Geraniol (100) CtGES Cinnamomum tenuipilum None, $ Yang et al. (2005)
AAM53945 (�)-b-Pinene (81.4) Cl(�)bPINS Citrus limon 1–6, 2–7 Lucker et al. (2002)
AAM53944 (+)-(4R)-Limonene (99.1) Cl(+)LIMS1 Citrus limon 1–6 Lucker et al. (2002)
AAM53946 (+)-(4R)-Limonene (99.1) Cl(+)LIMS2 Citrus limon 1–6 Lucker et al. (2002)
AAM53943 c-Terpinene (71.4) ClcTS Citrus limon 1–6, H Lucker et al. (2002)
BAD91045 1,8-Cineole (>97.2) CitMTSL1 Citrus unshiu 1–6, 3-O-7, $ Shimada et al. (2005a,b)
BAD91046 (E)-b-Ocimene (>97.2) CitMTSL4 Citrus unshiu None Shimada et al. (2005a,b)
BAD27260 b-Pinene (82.4) CitMTSL62 Citrus unshiu 1–6, 2–7 Shimada et al. (2004)
BAD27256 (+)-(4R)-Limonene (97) CitMTSE1 Citrus unshiu 1–6 Shimada et al. (2004)
BAD27257 (+)-(4R)-Limonene (100) CitMTSE2 Citrus unshiu 1–6 Shimada et al. (2005a)
BAD27258 c-Terpinene (85.4) CitMTSL3 Citrus unshiu 1–6, H Shimada et al. (2004)
BAD27259 c-Terpinene (78.4) CitMTSL61 Citrus unshiu 1–6, H Shimada et al. (2004)
AAC49395 (+)-(3S)-Linalool (�100)� LIS Clarkia brewerii None, $ Dudareva et al. (1996)
AAD19840 nd LIS2 Clarkia brewerii Cseke et al., 1998
AAD19839 nd LIS Clarkia concinna Cseke et al. (1998)
CAD57081 (+)-(3S)-Linalool (100) # FaNES1 Fragaria ananassa None, $ Aharoni et al. (2004)
CAD57106 (+)-(3S)-Linalool (100) # FaNES2 Fragaria ananassa None, $ Aharoni et al. (2004)
CAD57092 a-Pinene (�80) FvPINS Fragaria vesca 1–6, 2–7 Aharoni et al. (2004)
ABB73044 (+)-(4R)-Limonene (�39) LaLIMS Lavandula angustivolia 1–6 Landmann et al. (2007)
ABB73045 (�)-(3R)-Linalool (100) LaLINS Lavandula angustivolia None, $ Landmann et al. (2007)
AAT86042 (E)-b-Ocimene (98) LjEbOS Lotus japonicus – Arimura et al. (2004)
AAX69063 (�)-(3R)-Linalool (100) LeMTS1 Lycopersicon esculentum None, $ van Schie et al. (2007)
AAX69064 b-Myrcene (�50) LeMTS2 Lycopersicon esculentum None van Schie et al. (2007)
ACC66282 a-Terpineol (100) Mg17 Magnolia grandiflora 1–6, $ Lee and Chappell (2008)
AAP40638 Inactive – Melaleuca alternifolia Shelton et al. (2004)
AAL99381 (�)-(3R)-Linalool (96) – Mentha citrata None, $ Crowell et al. (2002)
AAC37366 (�)-(4S)-Limonene (94) LC5.2 Mentha spicata 1–6 Colby et al. (1993)
ABP88782 1,8-Cineole (�50) CIN Nicotiana suaveolens 1–6, 3-O-7, $ Roeder et al. (2007)
AAR11765 Geraniol (100) GES Ocimum basilicum None, $ Iijima et al. (2004a)
AAV63789 (�)-(3R)-Linalool (100) LIS Ocimum basilicum None, $ Iijima et al. (2004b)
AAV63792 Terpinolene (�50) TES Ocimum basilicum 1–6, H Iijima et al. (2004b)
AAV63790 Fenchol (�50) FES Ocimum basilicum 1–6, 2–7, H, $ Iijima et al. (2004b)
AAV63791 Myrcene (100) MYS Ocimum basilicum None Iijima et al. (2004b)
EU596453 (+)-(3S)-Linalool (100) Os02g02930 Oryza sativa None, $ Yuan et al. (2008)
AAY88965 Geraniol (100) PcTps-C Perilla citriodora None, $ Ito and Honda (2007)
AAF65545 nd – Perilla citriodora Ito et al. (2000)
AAG31438 (�)-(4S)-Limonene (�100) PFLC1 Perilla frutescens 1–6 Yuba et al. (1996)
AAF76186 Myrcene (�54) PTS-5526 Perilla frutescens None Hosoi et al. (2004)
ABB30218 Geraniol (100) PfTPS-PL Perilla frutescens None Ito and Honda (2007)
ABY65110 (E)-b-Ocimene (98) PlOS Phaseolus lunatus None Arimura et al. (2008b)
AAO73863 (+)-3-Carene (78) PaJF67 Picea abies 1–6, 5–7 Fäldt et al. (2003)
AAS47694 (�)-(4S)-Limonene (88) PaTPS-Lim Picea abies 1–6 Martin et al. (2004)
AAS47696 Myrcene (100) PaTPS-Myr Picea abies None Martin et al. (2004)
AAS47693 (�)-(3R)-Linalool (97) PaTPS-Lin Picea abies None, $ Martin et al. (2004)
AAS47692 (�)-b-Pinene (57) PaTPS-Pin Picea abies 1–6, 2–7 Martin et al. (2004)
AAP72020 (�)-a-Pinene (62.5) PsTPS2 Picea sitchensis 1–6, 2–7 McKay et al. (2003)
ABA86248 (�)-(4S)-Limonene (100) PsTPS-Lim Picea sitchensis 1–6 Byun-McKay et al. (2006)
ABA86247 nd PsTPS-Linl Picea sitchensis Byun-McKay et al. (2006)
AAO61225 (�)-a-Pinene (79) Pt1 Pinus taeda 1–6, 2–7 Phillips et al. (2003)
AAO61227 a-Terpineol (57.3) Pt10 Pinus taeda 1–6, $ Phillips et al. (2003)
AAO61228 (+)-a-Pinene (97) Pt30 Pinus taeda 1–6, 2–7 Phillips et al. (2003)
AAO61229 Inactive Pt42 Pinus taeda Phillips et al. (2003)
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Table 1 (continued)

Gene bank accession no. Main product(s)a (%) Designationb Species Cyclization typec References

AAX07267 (�)-a-Pinene (�40) PmeTPS1 Pseudotsuga menziesii 1–6, 2–7 Huber et al. (2005)
AAX07264 Terpinolene (�40) PmeTPS2 Pseudotsuga menziesii 1–6, H Huber et al. (2005)
CAC41012 Myrcene (�99) MyrS Quercus ilex None Fischbach et al. (2001)
ABH07677 1,8-Cineole (72) Sf-CinS1 Salvia fruticosa 1–6, 3-O-7, $ Kampranis et al. (2007)
AAC26018 (+)-Sabinene (63) SSS Salvia officinalis 1–6, 2–6, H Wise et al. (1998)
AAC26017 (+)-Bornyl diphosphate (75) SBS Salvia officinalis 1–6, 3–7, § Wise et al. (1998)
AAC26016 1,8-Cineole (79) SCS Salvia officinalis 1–6, 3-O-7, $ Wise et al. (1998)
ABH07678 Sabinene (�98) Sp-SabS1 Salvia pornifera 1–6, 2–6, H Kampranis et al. (2007)
AAM89254 (+)-3-Carene (73) – Salvia stenophylla 1–6, 5–7 Hoelscher et al. (2003)
ACF24767 a-Terpineol (�44) SamonoTPS1 Santalum album 1–6, $ Jones et al. (2008)
AAG01140 (+)-(4R)-Limonene (�75) dLMS Schizonepeta tenuifolia 1–6 Maruyama et al. (2001a)
AAS79351 (�)-a-Terpineol (50.1) VvTPS1891 Vitis vinifera 1–6, $ Martin and Bohlmann (2004)
AAS79352 (�)-a-Terpineol (50.1) VvTPS4568 Vitis vinifera 1–6, $ Martin and Bohlmann (2004)
AAL59230 (�)-a-Terpineol (�40) STC1-B73 Zea mays 1–6, $ Lin et al. (2008)
ABR09292 (�)-a-Terpineol (�60) TPS26-B73 Zea mays 1–6, $ Lin et al. (2008)

The symbols indicate the following steps in the reaction mechanism: $, carbocation capture by water; §, phosphorylation of carbocation; H, hydride shift; #, FaNES1, FaNES2,
and AmNES/LIS2 also produce the sesquiterpene nerolidol; nd, the enzymes were not expressed and characterized; �, the enzyme was not expressed, but the purified protein
was characterized by Pichersky et al. (1995).

a The percentage refers to the approximate amount of major product in the total blend of terpenes produced by the enzyme.
b The designation refers to the name in the original publication. These names have occasionally been changed in later publications.
c The numbers refer to the carbon atoms involved in ring formation using the nomenclature of the geranyl skeleton (Fig. 1).
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mechanism of these enzymes. Later sections are devoted to the ter-
pene synthase proteins and their role in mediating terpene skele-
ton formation.

To keep this review to a manageable size, we limit our coverage
to monoterpene and sesquiterpene synthases. Triterpene syn-
thases and the formation of the triterpene carbon skeleton have
been very authoritatively reviewed in several recent articles (Xu
et al., 2004; Phillips et al., 2006). Monoterpene and sesquiterpene
biosynthesis in general were covered in comprehensive fashion
in two outstanding chapters written in l999 (Wise and Croteau,
1999; Cane, 1999) and terpene synthases in three reviews (Davis
and Croteau, 2000; Tholl, 2006; Christianson, 2006).
2. Monoterpene and sesquiterpene synthases in plants

The wide scope of plant terpene synthase activities was first re-
vealed by studies with crude plant extracts and purified prepara-
tion of native enzymes (reviewed in Wise and Croteau, 1999).
More recently the isolation of terpene synthase genes and their
heterologous expression has provided the best evidence for the
size of this enzyme family and the breadth of its catalytic prowess.
A comprehensive list of all plant monoterpene and sesquiterpene
synthases cloned up to and including 2008 is given in Tables 1
and 2, ordered by the genus of the taxon from which the gene
was isolated. Also given are the major products of the enzyme
and notes on the reaction type. Until now research has focused
on a few species chosen because of their economic importance or
designation as model taxa. Obviously many more terpene syn-
thases remain to be described. The size of this enzyme class is a
principal reason for terpene diversity.

Terpene skeletal diversity arises not only from the number of
terpene synthases, but also from the ability of these catalysts to
form multiple products from a single substrate. In addition to their
main product, nearly half of all characterized monoterpene and
sesquiterpene synthases also form significant amounts of addi-
tional products (defined as at least 10% of the total) when the ex-
pressed protein is assayed in vitro (Tables 1 and 2). This property
was first recognized during investigation of terpene synthases in
plant extracts when it was realized that individual activities per-
sisted in producing multiple products in the same consistent pro-
portions during sequential purification steps (Gambliel and
Croteau, 1984). As confirmation of these observations, Croteau
and co-workers demonstrated that their preparations exhibited
isotopically sensitive branching when offered certain deuterium-
labeled substrates (Croteau, 1987; Wagschal et al., 1991). A reduc-
tion in the rate of formation of one or more products due to deute-
rium substitution was correlated with an increase in the rate of
formation of others, indicating that these enzyme products are de-
rived from a common intermediate of a single enzyme (rather than
different enzymes). The most definitive proof for the capacity of a
single terpene synthase to produce multiple products comes from
studies with terpene synthase genes. Expression in heterologous
hosts has made it clear that a single terpene synthase protein has
the ability to form several terpenes from a single substrate. For
example, one of the first cloned monoterpene synthases, (+)-sabin-
ene synthase from Salvia officinalis, produces 63% (+)-sabinene, but
also 21% c-terpinene, 7.0% terpinolene, 6.5% limonene and 2.5%
myrcene in in vitro assays (Wise et al., 1998). These additional
products or their immediate metabolites are also present in the
monoterpene-rich essential oil of the plant.
3. Reaction mechanisms

3.1. Monoterpene synthases

Research over many years has established a common carbocat-
ionic reaction mechanism for all monoterpene synthases initiated
by the divalent metal ion-dependent ionization of the substrate
(Fig. 1A and B). The resulting cationic intermediate undergoes a
series of cyclizations, hydride shifts or other rearrangements until
the reaction is terminated by proton loss or the addition of a nucle-
ophile. This mechanism was elucidated largely by Croteau and co-
workers by studies with substrate analogs, inhibitors, intermedi-
ates and analogs and native enzymes (Croteau, 1987; Wise and
Croteau, 1999). For example, the participation of carbocationic
intermediates was established by the inhibitory effect of fluori-
nated (Croteau, 1986) and sulfonium (Croteau et al., 1986) sub-
strate analogs coupled with previous investigations of model
chemical reactions.

Of the characterized monoterpene synthases in Table 1, approx-
imately one-third convert the substrate geranyl diphosphate (GPP)
to acyclic products (Fig. 1B). The mechanism of these reactions pro-
ceeds by ionization to the extended geranyl cation followed by
proton loss to form (E)-b-ocimene (Dudareva et al., 2003; Chen
et al., 2003; Fäldt et al., 2003a; Shimada et al., 2005a; Arimura
et al., 2004) and myrcene (Dudareva et al., 2003; Chen et al.,



Table 2
Sesquiterpene synthase genes isolated to date.

Gene bank accession no. Main product(s)a (%) Designationb Species Cyclization typec References

AAC24192 (E)-a-Bisabolene (�100) Ag1 Abies grandis 1–6 Bohlmann et al. (1998)
AAC05727 d-Selinene (�25)� Ag4 Abies grandis 1–10, 2–7, H, P Steele et al. (1998)
AAC05728 c-Humulene (�29) Ag5 Abies grandis 1–11 Steele et al. (1998)
AAK83562 nd (similar to Ag1) Abies grandis Trapp and Croteau (2001)
AAK83561 nd (similar to Ag4) Abies grandis Trapp and Croteau (2001)
ABR24417 (3S)-(E)-Nerolidol (100) AmNES/LIS-1 Antirrhinum majus None, $ Nagegowda et al. (2008)
AAO85539 (�)-(E)-b-Caryophyllene

(�80)
At5g23960 Arabidopsis thaliana 1–11, 2–10 Chen et al. (2003)

AAX59990 (+)-a-Barbatene (�27) At5g44630 Arabidopsis thaliana 1–6, 7–11, 2–11,*, H Tholl et al. (2005)
Wu et al. (2005)

NP_193064 (Z)-c-Bisabolene (�90) At4g13280 Arabidopsis thaliana 1–6 Ro et al. (2006)
NP_193066 (Z)-c-Bisabolene (�90) At4g13300 Arabidopsis thaliana 1–6 Ro et al. (2006)
CAB94691 Amorpha-4,11-diene KCS12 Artemisia annua 1–10, 1–6, H Chang et al. (2000)
AAF61439 Amorpha-4,11-diene (�89) NAC Artemisia annua 1–10, 1–6, H Mercke et al. (2000)
AAF98444 Amorpha-4,11-diene (�89) – Artemisia annua 1–10, 1–6, H Wallaart et al. (2001)
AAL79181 (E)-b-Caryophyllene QHS1 Artemisia annua 1–11, 2–10 Cai et al. (2002)
CAC12732 nd ASC34 Artemisia annua van Geldre et al. (2000)
CAC12731 nd ASC125 Artemisia annua van Geldre et al. (2000)
AAF80333 8-epi-Cedrol (�94) – Artemisia annua 1–6, 6–10, 2–11, $, H Hua and Matsuda (1999)
CAC08805 8-epi-Cedrol (�94)^ – Artemisia annua 1–6, 6–10, 2–11, $, H Mercke et al. (1999)
AAX39387 (E)-b-Farnesene (100) b-FS Artemisia annua None Picaud et al. (2005)
ABE03980 Germacrene A (100) AaGAS Artemisia annua 1–10 Bertea et al. (2006)
CAA06614 nd PEAS1 Capsicum annuum Zavala-Paramo et al. (2000)
AAC61260 5-epi-Aristolochene PEAS Capsicum annuum 1–10, 2–7, *, H, P Back et al. (1998)
AAF21053 Inactive CASC2 Capsicum annuum Back et al. (2000)
AAM21658 (+)-Germacrene A (�100) CiGASlo Cichorium intybus 1–10 Bouwmeester et al. (2002)
AAM21659 (+)-Germacrene A (�100) CiGASsh Cichorium intybus 1–10 Bouwmeester et al. (2002)
AAK54279 (E)-b-Farnesene (�100) CjFS Citrus junos None Maruyama et al. (2001a)
AAQ04608 Valencene (�100) CsTPS1 Citrus sinensis 1–10, 2–7, *, H, P Sharon-Asa et al. (2003)
ABX83200 d-Cadinene (�70) CmTPSNY Cucumis melo 1–10, 1–6, H Portnoy et al. (2008)
ABX83201 a-Farnesene (100) CmTPSDul Cucumis melo None Portnoy et al. (2008)
AAU05951 (E,E)-a-Farnesene (�100) CsaFS Cucumis sativus None Mercke et al. (2004)
AAU05952 (E)-b-Caryophyllene (�100) CsbCS Cucumis sativus 1–11, 2–10 Mercke et al. (2004)
AAC31570 nd – Elaeis oleifera Shah and Cha (2000)
AAA93064 (+)-d-Cadinene (�100) CAD1-C1 Gossypium arboreum 1–10, 1–6, H Chen et al. (1995)
CAA76223 nd CAD1-C2 Gossypium arboreum Meng et al. (1999)
AAD51718 nd CAD1-C3 Gossypium arboreum Tan et al. (2000)
AAA93065 (+)-d-Cadinene (�100) CAD1-C14 Gossypium arboreum 1–10, 1–6, H Chen et al. (1995)
CAA65289 (+)-d-Cadinene (�100) CAD1-A Gossypium arboreum 1–10, 1–6, H Chen et al. (1996)
AAC12784 (+)-d-Cadinene CDN1-C Gossypium hirsutum 1–10, 1–6, H Davis et al. (1996)
AAF74977 (+)-d-Cadinene CDN1-C4 Gossypium hirsutum 1–10, 1–6, H Townsend et al. (2005)
AAA86337 Vetispiradiene (>93) VS1 Hyoscyamus muticus 1–10, 2–7, **, P Back and Chappell (1995)
AAL92481 Germacrene A IdGAS Ixeris dentata 1–10 Kim et al. (2005)
AAM11626 Germacrene A LTC1 Lactuca sativa 1–10 Bennett et al. (2002)
AAM11627 Germacrene A LTC2 Lactuca sativa 1–10 Bennett et al. (2002)
ABB73046 (E)-a-Bergamotene (�74) LaBERS Lavandula angustivolia 1–6, 2–7 Landmann et al. (2007)
AAG41889 d-Elemene (�50) # SSTLE1 Lycopersicon esculentum 1–10, H van der Hoeven et al. (2000)
AAG41890 d-Elemene (�75) # SSTLE2 Lycopersicon esculentum 1–10, H van der Hoeven et al. (2000)
AAC39432 Germacrene C (64) – Lycopersicon esculentum 1–10, H Colby et al. (1998)
AAG41891 Germacrene B (�100) SSTLH1 Lycopersicon hirsutum 1–10 van der Hoeven et al. (2000)
AAG41892 Germacrene D (�70) SSTLH2 Lycopersicon hirsutum 1–10, H van der Hoeven et al. (2000)
ACC66281 b-Cubebene (�24) Mg25 Magnolia grandiflora 1–10, 1–6, 6–2, H Lee and Chappell (2008)

Inactive Mg11 Magnolia grandiflora Lee and Chappell (2008)
AAO22848 (E,E)-a-Farnesene (�98) AFS1 Malus x domestica None Pechous and Whitaker

(2004)
AAV36464 (E)-b-Caryophyllene (�92) MtTPS1 Medicago truncatula 1–11, 2–10 Arimura et al. (2008a)
AAV36466 (3S)-(E)-Nerolidol (100) MtTPS3 Medicago truncatula None, $ Arimura et al. (2008a)
ABB01625 (�)-Cubebol (30) MtTPS5 Medicago truncatula 1–10, 1–6, 2–6, H, $ Arimura et al. (2008a)
AAB95209 (E)-b-Farnesene (�85) TSPA11 Mentha x piperita None Crock et al. (1997)
CAH10288 (Z)-Muurola-3,5-diene (45) MxpSS1 Mentha x piperita 1–10, 1–6, H Prosser et al. (2006)
CAH10289 Inactive MxpSS2 Mentha x piperita Prosser et al. (2006)
AAA19216 5-epi-Aristolochene (�79) EAS3/EAS4 Nicotiana tabacum 1–10, 2–7, *, H, P Facchini and Chappell (1992)

Back et al. (1994)
O’Maille et al. (2006)

AAP79448 5-epi-Aristolochene (100) g110 Nicotiana tabacum 1–10, 2–7, *, H, P Wu et al. (2005)
AAP05760 5-epi-Aristolochene (�100) NaEAS12 Nicotiana attenuata 1–10, 2–7, *, H, P Bohlmann et al. (2002)
AAP05761 5-epi-Aristolochene (�100) NaEAS34 Nicotiana attenuata 1–10, 2–7, *, H, P Bohlmann et al. (2002)
AAP05762 5-epi-Aristolochene (�100) NaEAS37 Nicotiana attenuata 1–10, 2–7, *, H, P Bohlmann et al. (2002)
AAV63787 c-Cadinene (�30) CDS Ocimum basilicum 1–6, 1–10, H Iijima et al. (2004a)
AAV63785 b-Selinene (�30) SES Ocimum basilicum 1–10, 2–7, P Iijima et al. (2004a)
AAV63788 a-Zingiberene (�40) ZIS Ocimum basilicum 1–6, H Iijima et al. (2004a)
AAV63786 Germacrene D (100) GDS Ocimum basilicum 1–10, H Iijima et al. (2004a)
EU596452 Zingiberene (�25) Os08g07100 Oryza sativa 1–6, H Yuan et al. (2008)
EU596454 (E)-b-Caryophyllene (�47) Os08g04500 Oryza sativa 1–11, 2–10 Yuan et al. (2008)
ABJ16553 (E)-b-Caryophyllene (�46) OsTPS3 Oryza sativa 1–11, 2–10 Cheng et al. (2007)
ABJ16554 (E,E)-Farnesol (�84) OsTPS13 Oryza sativa None, $ Cheng et al. (2007)

1624 J. Degenhardt et al. / Phytochemistry 70 (2009) 1621–1637



Table 2 (continued)

Gene bank accession no. Main product(s)a (%) Designationb Species Cyclization typec References

AAS47695 Longifolene (61) PaTPS-Lon Picea abies 1–11, 1–6, 3–7, **, H Martin et al. (2004)
AAS47697 (E,E)-a-Farnesene (100) PaTPS-Far Picea abies None Martin et al. (2004)
AAS47689 (E)-a-Bisabolene (100) PaTPS-Bis Picea abies 1–6 Martin et al. (2004)
ABA86249 nd PsTPS-Sell Picea sitchensis Byun-McKay et al. (2006)
AAO61226 (E,E)-a-Farnesene (�100) Pt5 Pinus taeda None Phillips et al. (2003)
AAS86319 c-Curcumene (�90) PatTpsA Pogostemon cablin 1–6, H Deguerry et al. (2006)
AAS86320 (�)-Germacrene D (100) PatTpsBF2 Pogostemon cablin 1–10, H Deguerry et al. (2006)
AAS86321 (+)-Germacrene A (�90) PatTpsCF2 Pogostemon cablin 1–10 Deguerry et al. (2006)
AAS86322 (�)-Germacrene D (�60) PatTpsB15 Pogostemon cablin 1–10, H Deguerry et al. (2006)
AAS86323 (�)-Patchoulol (�50) PatTPS177 Pogostemon cablin 1–10, 7–11, 2–6, **, $, H Deguerry et al. (2006)
AAR99061 (�)-Germacrene D (�79) PtdTPS1 Populus trichocarpa x deltoides 1–10, H Arimura et al. (2004)
AAX07266 (E)-c-Bisabolene (100) PmeTPS3 Pseudotsuga menziesii 1,6 Huber et al. (2005)
AAX07265 (E)-b-Farnesene (100) PmeTPS4 Pseudotsuga menziesii None Huber et al. (2005)
– Germacrene D (�100) FC0592 Rosa hybrida 1–10, H Guterman et al. (2002)
ACF24768 Germacrene D-4-ol (�39) SasesquiTPS1 Santalum album 1–10, H, $ Jones et al. (2008)
BAA82109 nd PVS3 Solanum tuberosum Yoshioka et al. (1999)
BAA82108 nd PVS2 Solanum tuberosum Yoshioka et al. (1999)
BAA82029 nd PVS1 Solanum tuberosum Yoshioka et al. (1999)
AAR31144 (+)-Germacrene D (�90) (+)GDS, Sc11 Solidago canadensis 1–10, H Prosser et al. (2004)
AAR31145 (�)-Germacrene D (�90) (�)GDS, Sc19 Solidago canadensis 1–10, H Prosser et al. (2004)
CAC36896 (+)-Germacrene A (�98) Sc1 Solidago canadensis 1–10 Prosser et al. (2002)
AAS66358 (+)-Valencene (50) VvVal Vitis vinifera 1–10, 2–7, * Lucker et al. (2004)
AAS66357 (�)-Germacrene D (92) VvGerD Vitis vinifera 1–10, H Lucker et al. (2004)
AAO18435 (E,E)-Farnesol (�45) TPS1-B73 Zea mays None; $ Schnee et al. (2002)
AAS88571 (S)-b-Bisabolene (�29) TPS4-B73 Zea mays 1–6, 2–6 Köllner et al. (2004)
AAS88572 Inactive TPS5-B73 Zea mays None Köllner et al. (2004)
AAS88574 Sesquithujene (�28) TPS5-Del1 Zea mays 1–6, 2–6, H Köllner et al. (2004)
AAS88575 Inactive TPS5-Del2 Zea mays Köllner et al. (2004)
AAX99146 (E)-b-Farnesene (�50) TPS10-B73 Zea mays None Schnee et al. (2006)
AAS88576 (�)-b-Macrocarpene (�95) TPS6-B73 Zea mays 1–6, 11–14, P Köllner et al. (2008a)
AAT70085 (�)-b-Macrocarpene (�95) TPS6-Ban Zea mays 1–6, 11–14, P Köllner et al. (2008a)
ACF58240 (�)-b-Macrocarpene (�95) TPS11-B73 Zea mays 1–6, 11–14, P Köllner et al. (2008a)
ABY79206 (E)-b-Caryophyllene (�90) TPS23-Del1 Zea mays 1–11, 2–10 Köllner et al. (2008b)
ABY79209 (E)-b-Caryophyllene (�90) TPS23-dip Zea diploperennis 1–11, 2–10 Köllner et al. (2008b)
ABY79210 (E)-b-Caryophyllene (�90) TPS23-hue Zea m. huehuetenangensis 1–11, 2–10 Köllner et al. (2008b)
ABY79211 (E)-b-Caryophyllene (�90) TPS23-lux Zea luxurians 1–11, 2–10 Köllner et al. (2008b)
ABY79212 (E)-b-Caryophyllene (�90) TPS23-mex Zea mays mexicana 1–11, 2–10 Köllner et al. (2008b)
ABY79213 (E)-b-Caryophyllene (�90) TPS23-par Zea mays parviglumis 1–11, 2–10 Köllner et al. (2008b)
ABY79214 (E)-b-Caryophyllene (�90) TPS23-per Zea perennis 1–11, 2–10 Köllner et al. (2008b)
AAX40665 (+)-Germacrene D (�50) – Zingiber officinale 1–10, H Picaud et al. (2006)
BAG12020 a-Humulene (�95) ZSS1 Zingiber zerumbet 1–11 Yu et al. (2008a)
BAG12021 b-Eudesmol (63) ZSS2 Zingiber zerumbet 1–10, 2–7, H Yu et al. (2008b)

The symbols indicate the following steps in the reaction mechanism: *, methyl shift; **, ring contraction; $, carbocation capture by water; H, hydride shift; P, protonation of a
reaction intermediate. #, d-elemene could have been formed from germacrene C in the GC injector at the 250 �C temperature used; �, the purified enzyme produced
germacrene B (33%) as main product (Little and Croteau, 2002); nd, the enzymes were not expressed and characterized; ^, identical to AAF80333.

a The approximate percentage refers to the amount of the major product in the total blend of the terpenes produced by the enzyme.
b The designation refers to the name in the original publication. These names have occasionally been changed in later publications.
c The numbers refer to the carbon atoms involved in ring formation using nomenclature of the farnesyl skeleton (Fig. 2).
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2003; Fischbach et al., 2001; Martin et al., 2004; Hosoi et al., 2004;
Iijima et al., 2004a; Bohlmann et al., 1997, 2000) or addition of
water to form geraniol (Yang et al., 2005; Iijima et al., 2004b) or
linalool (Chen et al., 2003; Martin et al., 2004; Iijima et al.,
2004a; Jia et al., 1999; Dudareva et al., 1996; Aharoni et al.,
2004; Crowell et al., 2002) (Fig. 1B). It is also conceivable that lin-
alool, myrcene and (E)-b-ocimene are derived from the linalyl cat-
ion that is the result of a previous isomerization (Fig. 1B). The
formation of cyclic products is impeded by the (E)-geometry of
the 2,3-double bond of the geranyl cation. However, preliminary
conversion of the geranyl cation to the tertiary linalyl cation facil-
itates cyclization to a six-membered ring. Studies with LPP as an
alternative substrate in combination with GPP indicated the forma-
tion of a linalyl diphosphate (LPP) (Fig. 1A) as an intermediate in
terpene synthase catalysis (Croteau et al., 1980). These observa-
tions were supported by investigations with tritium-labeled GPP
(Croteau and Felton, 1981) and non-cyclizable GPP analogs
(Wheeler and Croteau, 1986, 1987). The elucidation of the three-
dimensional structure of Mentha limonene synthase cocrystalized
with the substrate analog 2-fluorogeranyl diphosphate and
2-fluorolinalyl diphosphate provided further evidence for the
intermediacy of LPP in the isomerization reaction (Hyatt et al.,
2007).

From the cisoid, anti-endo conformer of the linalyl cation, elec-
trophilic attack of C1 on the C6–C7 double bond gives the cyclic
a-terpinyl cation, a critical branchpoint intermediate in the for-
mation of all cyclic monoterpenes. From the a-terpinyl cation, ter-
pene synthase-catalyzed proton loss leads to limonene
(Rajaonarivony et al., 1992; Martin et al., 2004; Bohlmann et al.,
1997, 1999; Maruyama et al., 2001b, 2002; Lucker et al., 2002;
Shimada et al., 2004, 2005b; Colby et al., 1993; Yuba et al.,
1996; Byun-McKay et al., 2006), or terpinolene (Iijima et al.,
2004a; Bohlmann et al., 1999; Huber et al., 2005) while water cap-
ture gives a-terpineol (Croteau et al., 1994; Martin and Bohlmann,
2004). Terpene synthase-mediated 1,2- or 1,3-hydride shifts of the
a-terpinyl cation followed by proton losses yield the isomeric ter-
pinene and phellandrene products (LaFever and Croteau, 1993;
Shimada et al., 2004; Bohlmann et al., 1999). Formation of 1,8-cin-
eole is also thought to proceed from the a-terpinyl cation via an
a-terpineol intermediate which undergoes internal additional
cyclization of the alcoholic oxygen (Croteau et al., 1994; Wise
et al., 1998; Chen et al., 2004).
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The a-terpinyl cation can also undergo additional cyclizations
resulting from electrophilic attack of the carbocationic center on
one of the carbon atoms of the remaining double bond. A Mark-
ovnikov addition (2,7-cyclization) generates the pinyl cation,
which can undergo proton loss to yield a-pinene (Croteau et al.,
1989; Aharoni et al., 2004; McKay et al., 2003) or b-pinene (Cro-
teau et al., 1989; Martin et al., 2004; Bohlmann et al., 1997; Lucker
et al., 2002; Shimada et al., 2004; Lu et al., 2002), the main prod-
ucts of many terpene synthases especially in conifers. Anti-Mark-
ovnikov addition (3,7-cyclization) generates the bornyl cation
(Croteau et al., 1990). The major monoterpenes with a bornyl car-
bon skeleton, borneol and camphor, are formed via a bornyl
diphosphate intermediate (Croteau and Karp, 1977). In this pro-
cess, a terpene synthase catalyzes bornyl diphosphate formation
from the bornyl cation via internal return of the diphosphate moi-
ety from the original geranyl diphosphate substrate (Whittington
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et al., 2002a). The product is then hydrolyzed and oxidized to bor-
neol and camphor, respectively (Croteau and Karp, 1979; Dehal
and Croteau, 1987). The formation of two other bicyclic monoter-
pene skeletons are thought to involve terpene synthase-mediated
Wagner–Meerwein rearrangements forming the fenchyl skeleton
(precursor of fenchol) from the pinyl cation (Croteau et al., 1989;
Iijima et al., 2004a) and the isocamphyl skeleton (precursor of
camphene) from the bornyl cation (Croteau et al., 1990; Bohlmann
et al., 1999). Another cyclization from the a-terpinyl cation is 5,7-
closure to form a cyclopropyl ring leading to 3-carene (Savage and
Croteau, 1993; Hoelscher et al., 2003). Terpene synthases form
bicyclic monoterpenes with a cyclopropyl ring via another route
in which a 1,2-hydride shift of the a-terpinyl cation is followed
by 2,6-closure to give the sabinyl cation, precursor of sabinene
and related monoterpenes (Hallahan and Croteau, 1989; Wise
et al., 1998).

The highly reticulate general reaction mechanism of monoter-
pene synthases suggests a rationale for the ability of these en-
zymes to make multiple products. Given that an individual
intermediate may have multiple fates, the enzyme may simply ex-
ploit this property. For example, a terpene synthase could allow
one carbocation to be converted to a mixture of others by facilitat-
ing various cyclizations, hydride shifts or rearrangements (Lucker
et al., 2002; Shimada et al., 2004; Huber et al., 2005; Martin and
Bohlmann, 2004). Or it could mediate different types of termina-
tion reactions (deprotonation, water capture) on a single cation
(McKay et al., 2003; Peters and Croteau, 2003). In some cases,
the minor products of the enzyme have fewer cyclizations than
the main product, suggesting that the minor products are formed
from reaction intermediates subjected to premature termination
(Iijima et al., 2004a). Whatever the explanation for multiple prod-
uct formation, the occurrence of a broad spectrum of products has
often proved valuable in tracing the reaction mechanism.

3.2. Sesquiterpene synthases

The formation of sesquiterpenes from farnesyl diphosphate cat-
alyzed by sesquiterpene synthases employs similar carbocationic-
based reaction mechanisms as those of monoterpene synthases.
However, the larger carbon skeleton of farnesyl diphosphate
(FPP) and the presence of three, instead of two, double bonds
greatly increases structural diversity of the products. Thus we have
space only to describe the major steps of these mechanisms. As for
monoterpene synthases, the basic principles of sesquiterpene syn-
thase mechanisms were derived from studies with native enzymes,
although microbial enzymes played a much larger role here than
they did for monoterpene synthases. Since this review is dedicated
to plant terpene synthases, only few of the thorough studies on the
reaction mechanisms of fungal and bacterial terpene synthases can
be mentioned here.

The initial cyclization reactions can be divided into two types
(Fig. 2A and B). One type involves cyclization of the initially-
formed farnesyl cation to yield 10-membered ((E,E)-germacradie-
nyl cation) or 11-membered ((E)-humulyl cation) rings. Given the
large size of these rings, the (E)-geometry of the C2–C3 double
bond is no barrier to cyclization. The second type of cyclization
proceeds after preliminary isomerization of the C2–C3 double bond
to the tertiary nerolidyl cation, in direct analogy with the isomer-
ization of GPP to the linalyl cation in the mechanism of the mono-
terpene synthases. Evidence for the intermediacy of the nerolidyl
intermediate in the sesquiterpene synthase mechanism comes
from detailed studies with multiply-labeled FPP and nerolidyl
diphosphate substrates (Cane and Iyengar, 1979; Cane et al.,
1981; Cane and Yang, 1994; Cane and Tandon, 1995; Alchanati
et al., 1998). The cisoid conformer of the nerolidyl cation can un-
dergo cyclization to either the central or distal double bond form-
ing 1,6-(bisabolyl cation), 1,7-(cycloheptanyl cation), 1,10-((Z,E)-
germacradienyl cation) or 1,11-((Z)-humulyl cation) products.

Subsequent cyclizations can involve carbocationic attack on
either of the two remaining double bonds giving a wide range of
different carbon skeletons. With so many possibilities, it is often
difficult to determine the sequence of ring closures. For example,
d-cadinene which has a naphthalene-type ring skeleton could arise
from initial formation of a 10-membered ring followed by parti-
tioning into two six-membered rings, or from sequential formation
of six-membered rings. Characterization of a cotton d-cadinene
synthase suggests that 1,10-cyclization is the first step followed
by 1,6-closure to give ring partitioning (Chen et al., 1995; Alchanati
et al., 1998; Benedict et al., 2001). However, the sequence of cycli-
zations may differ for sesquiterpene synthases forming other
naphthalene-type skeletons. Another example of ring closure se-
quence is that catalyzed by 2-epi-cedrol synthases from Artemisia
annua in which initial 1,6-ring formation is followed by 6,10-
and then 2,11-closure (Hua and Matsuda, 1999; Mercke et al.,
1999). In addition to cyclization, sesquiterpene synthase mecha-
nisms include a range of different reaction types similar to that
found in monoterpene synthase mechanisms, including 1,2-, 1,3-
and 1,4-hydride shifts. Skeletal rearrangements observed include
ring contractions (Martin et al., 2004; Back and Chappell, 1995)
and other Wagner–Meerwein rearrangements as well as 1,2-
methyl shifts (Tholl et al., 2005).

Unique to the formation of certain sesquiterpenes is the inter-
mediacy of neutral sesquiterpene species. For example, the mech-
anism of 5-epi-aristolochene synthase proceeds via an initial 1,10-
cyclization forming the (E,E)-germacradienyl cation to germacrene
A. This neutral olefin is then protonated on the C6–C7 double bond
in Markovnikov orientation to reform a cation, which then under-
goes 2,7-cyclization to form a eudesmane cation (Rising et al.,
2000). An analogous protonation of a neutral germacrene interme-
diate is part of the mechanistic sequence of vetispiradiene syn-
thase (Back and Chappell, 1995), valencene synthase (Sharon-Asa
et al., 2003) and b-selinene synthase (Iijima et al., 2004a). A differ-
ent neutral intermediate, (S)-b-bisabolene, is involved in the bio-
synthesis of (S)-b-macrocarpene by the maize terpene synthases
TPS6 and TPS11. In both enzymes, the proton required for the rep-
rotonation of the (S)-b-bisabolene intermediate is abstracted from
water (Köllner et al., 2008b).
4. Structure–function correlations in terpene synthases

Despite our detailed knowledge of monoterpene and sesquiter-
pene synthase mechanisms, comparatively little information is
available about how various structural features of the proteins
themselves mediate substrate binding and catalysis. Even though
there is a substantial degree of amino acid sequence similarity
among plant monoterpene and sesquiterpene synthases, similarity
is based more on taxonomic affinities of the plant species from
which the gene was isolated rather than the type of products
formed (Bohlmann et al., 1998b). Nevertheless a number of com-
mon structural elements has been recognized.
4.1. General sequence and domains

In considering the entire protein, plant monoterpene synthases
with 600–650 amino acids are longer than sesquiterpene synthases
(550–580 amino acids) due to an N-terminal signal peptide that
targets the initial translation product towards the plastids (Turner
et al., 1999). These signal peptides characteristically contain a high
frequency of serine and threonine residues and low amounts of
acidic amino acids, but no common sequence elements
have been identified (Bohlmann et al., 1997). Analysis of the
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three-dimensional structures of four plant terpene synthases, a
sesquiterpene synthase from Nicotiana tabacum (Starks et al.,
1997) and three monoterpene synthases, from Salvia officinalis
(Whittington et al., 2002b), Mentha spicata (Hyatt et al., 2007)
and Salvia fruticosa (Kampranis et al., 2007), respectively, shows
extensive similarities despite differences in reaction mechanism.
These proteins all have a tertiary structure consisting entirely of
a-helices and short connecting loops and turns and are organized
into two structural domains, of which the C-terminal domain con-
tains the active site. This domain possesses a structure similar to
those of fungal and bacterial terpene synthases (Caruthers et al.,
2000; Rynkiewicz et al., 2001; Shishova et al., 2007; Lesburg
et al., 1997; Christianson, 2006) despite the lack of sequence sim-
ilarity, suggesting the existence of a general ‘terpene synthase fold’
(Lesburg et al., 1997). The enzyme active site is a hydrophobic
pocket of the C-terminal domain that is formed by six a-helices
and closed off towards the outside by two loops which are located
on the protein surface. Substrate binding in the active site of tobac-
co 5-epi-aristolochene synthase (TEAS), as determined by co-crys-
tallization with the non-hydrolyzable FPP analogs, farnesyl
hydroxyphosphonate and trifluorofarnesyl diphosphate, demon-
strated that the hydrophobic moiety of FPP reaches into the active
cavity while the diphosphate function interacts with magnesium
ions at the entrance of the active site.

The N-terminal domain of plant terpene synthases has struc-
tural similarity with some glycosylhydrolases (Dudareva et al.,
1996) but few functional elements have been identified. Evidence
from mutational analyses indicates that this domain acts as a scaf-
fold facilitating proper folding of the catalytically active C-terminal
domain (Köllner et al., 2004). Experiments in which domains were
exchanged between the sesquiterpene synthases TEAS and vetispi-
radiene synthase from Hyoscyamus muticus demonstrated that
vetispiradiene synthase was fully functional with the N-terminal
domain of TEAS, but the reverse combination resulted in a hybrid
with strongly reduced activity (Back and Chappell, 1996). An unu-
sual element of approximately 210 amino acid residues in the N-
terminal domain appears in a sesquiterpene synthase, the (E)-a-
bisabolene synthase from Abies grandis (Bohlmann et al., 1998a),
a monoterpene synthase, the (S)-linalool synthase of Clarkia brew-
eri (Dudareva et al., 1996), and in most isolated diterpene syn-
thases (Bohlmann et al., 1998b). No function has yet been
described for this element, although it may constitute an ancestral
feature of plant terpene synthases that points to the common ori-
gin of this enzyme class (Bohlmann et al., 1998b).

The best known structural motif of the terpene synthase family
is an aspartate-rich region, DDxxD, found in virtually all isolated
plant terpene synthases as well as in isoprenyl diphosphate syn-
thases and microbial terpene synthases. Site-directed mutagenesis
as well as X-ray structural analysis revealed that this region is in-
volved in binding divalent metal ions which in turn interact with
the diphosphate moiety of the substrate (Starks et al., 1997; Les-
burg et al., 1997; Tarshis et al., 1994, 1996; Cane et al., 1996a,b).
The location of the DDxxD motif at the entrance of the catalytic site
appears to be critical in positioning the substrate for catalysis.
Mutations in this region frequently lead to decreased catalytic
activity and the appearance of abnormal products which can be
attributed to altered substrate binding (Cane et al., 1996a,b; Ryn-
kiewicz et al., 2002; Seemann et al., 2002; Little and Croteau,
2002; Prosser et al., 2004). However, a naturally occuring variant
of the DDxxD motif, a NDxxD sequence in the fully active (+) ger-
macrene D synthase from goldenrod, has no impact on catalytic
activity demonstrating that the highly conserved DDxxD motif is
not as necessary for catalytic activity in farnesyl diphosphate cycli-
zation as previously assumed (Prosser et al., 2004). X-ray structural
analysis of terpene synthases revealed an additional metal cofactor
binding motif located on the opposite site of the active site entry
(Christianson, 2006). This motif, designated NSE/DTE motif, has
apparently evolved from a second aspartate-rich motif conserved
in prenyl transferases to form a consensus sequence of
(L,V)(V,L,A)-(N,D)D(L,I,V)x(S,T)xxxE (Cane and Kang, 2000; Chris-
tianson, 2006). Both the DDxxD motif and the NSE/DTE motif bind
a trinuclear magnesium cluster involved in fixation of the pyro-
phosphate substrate. Whereas the DDxxD motif is highly con-
served throughout almost all plant terpene synthases, the NSE/
DTE motif appears to be less well conserved. Recently, mutational
investigation of the NSE/DTE motif in abietadiene synthase from
Abies grandis led to the speculation that a water molecule could
substitute for the hydroxyl side chain of the central serine/threo-
nine in terpene synthases when a glycine is located at this position
(Zhou and Peters, 2009). In some sesquiterpene synthases, the NSE/
DTE motif is replaced by a second DDxxD motif (Steele et al., 1998)
which was also shown to be involved in catalysis (Little and Cro-
teau, 2002).

Several terpene synthases from gymnosperms (Bohlmann et al.,
1998b) as well as an apple a-farnesene synthase (Green et al.,
2007) require potassium for enzyme activity. Recently, the H-a1
loop, which is located in direct proximity to the NSE/DTE motif,
was identified as the potassium binding region in these enzymes.
It is assumed that potassium ions stabilize this loop region for opti-
mal substrate binding (Green et al., 2009).

About 35 amino acids upstream of the DDxxD motif is a highly
conserved RxR motif that was implicated in the complexation of
the diphosphate function after ionization of the substrate prevent-
ing nucleophilic attack on any of the carbocationic intermediates
(Starks et al., 1997).

A second arginine-rich motif found approximately 60 residues
from the N-terminus of many monoterpene synthases is a tandem
arginine (RR). Deletion studies on the limonene synthase of Mentha
spicata demonstrated that all amino acids N-terminal to this point
were dispensable for enzyme activity (Williams et al., 1998). How-
ever, deletion of the tandem arginine motif rendered the limonene
synthase unable to accept geranyl diphosphate as a substrate.
Since the enzyme was still able to convert linalyl diphosphate to
limonene, this suggested that the RR motif might participate in
the isomerization of GPP to a cyclizable intermediate, such as the
linalyl cation (Williams et al., 1998). In keeping with this sugges-
tion, the RR motif can be absent in monoterpene synthases produc-
ing only acyclic compounds, which do not require isomerization.

Additional amino acids have been implicated in the catalytic
function of specific terpene synthases. For example, in TEAS the
formation of 5-epi-aristolochene proceeds via the enzyme-bound,
neutral intermediate, germacrene A (Cane, 1990). The protonation
of this intermediate at C6 is catalyzed by a triad of amino acids
consisting of Y520, D444 and D52565 as demonstrated by muta-
tional analysis of the tyrosine residue (Rising et al., 2000). The N-
terminus of the enzyme folds over the entrance of the active site
after substrate binding and so might contribute to shielding the ac-
tive site from the outer aqueous medium (Starks et al., 1997). How-
ever, N-terminal deletions of TEAS65 or the limonene synthase
from M. spicata (Davis and Croteau, 2000) did not result in an in-
creased proportion of hydroxylated products as might be expected
after increased exposure of carbocationic intermediates to water.

4.2. Other structure–function correlations

A variety of structure–function correlations have been reported
for other terpene synthases. In a monoterpene synthase, (�)-a-
pinene synthase from A. grandis, the amino acids serine 485 and
cysteine 480 were implicated as terminal proton acceptors in the
final deprotonation of the pinyl cation to form a- and b-pinene,
while cysteine 372 and phenylalanine 579 were found to influence
the ratio of a- to b-pinene (Hyatt and Croteau, 2005). Domain



1630 J. Degenhardt et al. / Phytochemistry 70 (2009) 1621–1637
swapping experiments indicated that the product specificity of this
a-pinene synthase and a related (�)-limonene synthase from A.
grandis are determined by amino acids in the helices D–F which
contribute to the active site cavity (Katoh et al., 2004). A similar re-
gion was found to be catalytically important in domain swapping
experiments with monoterpene synthases from Citrus limon (El Ta-
mer et al., 2003). Differences in termination chemistry between a
1,8-cineole synthase and sabinene synthase from S. officinalis were
traced to a 73 amino acid region including helices C and D of the C-
terminal domains (Peters and Croteau, 2003). Structural elucida-
tion of a 1,8-cineole synthase from S. fruticosa identified five amino
acid residues involved in the final step of the reaction, the addition
of water to an a-terpinyl intermediate. Conversion of these five
residues to those found in sabinene synthases of the closely related
species S. officinalis and Salvia pomifera abolished the formation of
1,8-cineole in favor of sabinene (Kampranis et al., 2007).

Among sesquiterpene synthases, a mutational analysis of a ger-
macrene A synthase from Ixeris dentata which has a reaction mech-
anism similar to the early steps of the TEAS mechanism revealed
that a threonine in position 401 is important for intermediate sta-
bilization and the formation of the eudesmane skeleton (Chang
et al., 2005). Comparison of two closely related sesquiterpene syn-
thases in maize, TPS4 and TPS5, identified a four amino acid motif
that determines the stereospecificity of these multi-product en-
zymes (Köllner et al., 2004). The motif is located on helix G which
divides the active site into two pockets with different catalytic
functions (Köllner et al., 2006). In a d-cadinene synthase from cot-
ton, the alteration of two amino acids in the active site affected the
cyclization and termination reactions resulting in the formation of
a germacrene alcohol as main product (Yoshikuni et al., 2006a).

Sesquiterpene synthases have also been the subject of several
large-scale structure–function studies. For example, saturating
mutagenesis of four amino acid residues in the active center of
c-humulene synthase from A. grandis (Yoshikuni et al., 2006b)
showed that the effect of mutations in these residues was additive.
Seven enzymes were engineered with different combinations of
mutations each of which produced a different terpene blend. An-
other systematic approach to identify the residues responsible
for terpene synthase product specificity compared the closely re-
lated sesquiterpene synthases, TEAS from N. tabacum and vetispi-
radiene synthase from H. muticus. A mutational analysis of amino
acid differences with different distances from the active center
demonstrated that the nine amino acid residues most important
in determining product specificity include residues lining the ac-
tive site, and also those forming points of contact with the sur-
rounding alpha helices. These latter residues seem more likely to
function by altering the shape of the active site cavity rather than
by providing functional groups for catalysis (Greenhagen et al.,
2006). Study of a library of all possible combinations of these nine
residues in TEAS revealed that no one single residue is more impor-
tant than the others in controlling product distribution and that
successive mutations usually had additive effects (O’Maille et al.,
2008). Mutation of TEAS usually increased the number of minor
products suggesting that extant terpene synthases have evolved
from more promiscuous ancestors.

4.3. Correlation of active site residues and mechanistic features- a
meta-analysis

Many of the mutational studies cited above demonstrate that
the product specificity of terpene synthases is both dependent on
the amino acid residues forming the active site cavity and the spe-
cial constraints of the active site. Hence it is conceivable that the
active site residues are conserved in enzymes with similar reaction
mechanisms. The compilations of terpene synthases in Tables 1
and 2 of this review provide a simple means for an approximate
test of this hypothesis. First, we identified the residues forming
the active sites of bornyl diphosphate synthase (for monoterpene
synthases) and TEAS (for sesquiterpene synthases) using the struc-
tural information available for these enzymes (Back and Chappell,
1996; Greenhagen et al., 2006; O’Maille et al., 2008; Rising et al.,
2000; Starks et al., 1997; Whittington et al., 2002a,b). Then, we car-
ried out an alignment of all monoterpene synthases or sesquiter-
pene synthases with the program package DNAstar utilizing a
Clustal W algorithm (matrix: PAM250, gap penalty: 10, gap length:
0.2, delay divergent sequence: 20, DNA transition weight: 0.5) to
identify the amino acids most likely to form the active sites in each
enzyme based on its correspondence with the active site sequences
of bornyl diphosphate synthase or TEAS. Finally, we created
dendrograms comparing the deduced active site amino acid resi-
dues of each of the enzymes to search for correlations with specific
properties of the reactions they catalyze. These graphs were made
using the TREECON 1.3b software package (Van de Peer and De
Wachter, 1994) employing a neighbor-joining algorithm with
bootstrap values from 1000 trials (Figs. 3 and 4).

For monoterpene synthases, the resulting dendrogram of active
site residues shows some correlation with reaction type. Based on
similarities among the 47 residues identified as part of the active
site, several enzyme clusters are evident whose members lack
any cyclization mechanism, that is they make only acyclic prod-
ucts. For example, in the middle of the dendrogram there is a
well-defined clade containing six enzymes from Fragaria ananassa,
Arabidopsis thaliana and Antirrhinum majus that produce (E)-b-
ocimene, myrcene and linalool. Immediately above it is a subclade
of three (E)-b-ocimene synthases from A. thaliana, Lotus japonicus
and Citrus unshiu, while just below is a subclade of three enzymes,
two of which (from Ocimum basilicum) produce the acyclic prod-
ucts, geraniol and linalool. The existence of these clusters suggests
that the production of acyclic monoterpenes may involve certain
sets of conserved features in the active site. The remaining areas
of the dendrogram contain principally monoterpene synthases
producing cyclic products. Since all of these cyclases mediate 1,6-
cyclizations to form the a-terpinyl cation, there appear to be some
conserved features in the active site for this component of the
mechanism.

Beyond these trends, little correlation can be noted between ac-
tive site sequences of monoterpene synthases and cyclization type.
And, there is no relationship between the incidence of multiple
product formation and active site sequence. Instead, the major split
in the dendrogram is between a clade of angiosperm monoterpene
synthases (Fig. 3) and a clade of gymnosperm monoterpene syn-
thases (below). Such sharp differences between the sequences of
angiosperms and gymnosperm terpene synthases genes were pre-
viously noted (Bohlmann et al., 1998b), suggesting independent
evolution of these two groups. The fact that there is a large overlap
between angiosperm and gymnosperm monoterpene synthase
products [e.g., myrcene, (�)-linalool, (�)-limonene, terpinolene,
(�)-b-pinene, 3-carene] illustrates convergence of enzyme func-
tion using different active site constructions. Enzyme specificity
may be determined to a large degree by the spatial proportions
of the active center defined by the overall structure of the enzyme
rather than the precise residues present (Greenhagen et al., 2006).
At lower taxonomic levels, terpene synthases from the same genus
often show a close similarity in active site sequence despite func-
tional differences. However, the monoterpene synthases of Citrus
sp. and A. thaliana appear in three distant subclades within the
angiosperms. Clearly, different evolutionary lines of monoterpene
synthases exist within a single species, a trend which may become
much more evident once more terpene synthase sequences are
available.

Analysis of the 45 residues forming the active site of sesquiter-
pene synthases also showed some correlations between enzyme
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structure and reaction mechanism. Nearly all of the top 28 se-
quences in the dendrogram (Fig. 4) employ a 1,10-cyclization
mechanism. Included in this group are both direct 1,10-cycliza-
tions of FPP forming the (E,E)-germacradienyl cation and 1,10-
cyclizations following isomerization to the nerolidyl cation which
form the (Z,E)-germacradienyl cation. The presence of both mech-
anism types in this sequence group indicates that similar protein
features may mediate these cyclizations, regardless of
stereochemistry.

Acyclic sesquiterpene synthases are scattered over the dendro-
gram suggesting multiple evolutionary origins for this enzyme
class. A clade of 13 sequences in the lower middle part of the den-
drogram (Fig. 4) has a high proportion of enzymes making acyclic
products, but also a subclade of enzymes from Asteraceae taxa
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employing a 1,10-cyclization in their reaction mechanisms. Over
the entire figure, there is no relationship between the sequence
of the active site and the tendency to form multiple products, sug-
gesting no universal feature of terpene synthases exists that distin-
guishes multiple- from single-product enzymes.
These conclusions about sesquiterpene synthase active site
structure and mechanism are necessarily premature since the en-
zymes characterized to date represent only a small portion of those
present in nature. Since most recent sesquiterpene synthase genes
have been isolated by homology-based PCR approaches, according
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to their similarity to known gene sequences, divergent types of
genes might have been missed. In addition, the analysis might be
refined by considering not just active site residues, but other resi-
dues adjacent to the catalytic center.

The dendrogram of sesquiterpene synthase active site se-
quences, unlike that for monoterpene synthases, does not give an
absolute split between gymnosperm and angiosperm enzymes. In
addition to the tight cluster of 7 gymnosperm sequences at the
bottom of the dendrogram, two other gymnosperm sequences
making acyclic products cluster with angiosperm enzymes. This
may indicate that more than one type of sesquiterpene synthase
existed before the evolutionary divide between gymnosperms
and angiosperms. At lower taxonomic levels, there is a strong ten-
dency for sequences from the same genus to cluster together. How-
ever, as with monoterpene synthases, sequences for certain genera
are widely scattered in the dendrogram, highlighting the diversity
of evolutionary lines within sesquiterpene synthases. As the ter-
pene synthase families of genera besides Arabidopsis (Aubourg
et al., 2002) become better known, the outline of sesquiterpene
synthase evolution should become clearer, and the structural ele-
ments required for specific reactions should be better revealed.

4.4. Terpene synthase structure and multiple products

The ability of terpene synthases to convert a prenyl diphosphate
substrate to diverse products during different reaction cycles is one
of the most unique traits of this enzyme class. As described above,
this property is found in nearly half of all characterized monoter-
pene and sesquiterpene synthases and may be attributed to the
fact that the various reactive carbocationic intermediates can be
stabilized in more than one way. However, since half of all mono-
terpene and sesquiterpene synthases channel their carbocationic-
based catalysis into a single product, it is clear that some feature
of the protein, rather than the mechanism itself, is responsible
for multiple product formation. However, our simplistic analysis
of the active site sequences of all currently-known enzymes (Figs.
3 and 4) did not reveal any such general feature.

Individual terpene synthases may have specific ways of gener-
ating multiple products. For example, the c-humulene synthase
of A. grandis, which generates 52 different sesquiterpenes, has
two DDxxD motifs located on opposite sides of the active site cleft,
which led to the suggestion that substrate binding in two different
conformations results in different sets of products (Steele et al.,
1998). Indeed, inactivation of one of the DDxxD motifs by muta-
genesis resulted in enzymes that produce a lower number of prod-
ucts (Steele et al., 1998). The formation of multiple products might
also be enhanced by the NSE/DTE motif that is situated at the posi-
tion of the second DDxxD motif in some terpene synthases.

The relationship between active site architecture and multiple
product formation has been studied with the terpene synthase
TPS4 of Zea mays which forms the sesquiterpenes 7-epi-sesquithuj-
ene, b-bisabolene and 12 other olefins in minor amounts (Köllner
et al., 2004). To understand the complex reaction mechanism of
TPS4, the active site cavity was modeled and docking simulations
with the substrate farnesyl diphosphate, with several predicted
carbocation intermediates and with the final reaction products
were conducted (Köllner et al., 2006). The results suggested that
discrete steps of the reaction sequence occur in two different active
site pockets, with a conformational change in the bisabolyl cation
intermediate causing a shift from one pocket to the other. Site-di-
rected mutagenesis and measurements of mutant enzyme activity
with both (E,E)- and (Z,E)-farnesyl diphosphate were employed to
support this model. Amino acid alterations in pocket I indicated
that early steps of the catalytic process are localized in this com-
partment up to the formation of the monocyclic bisabolyl cation.
Mutations in pocket II primarily inhibited the formation of bicyclic
compounds, suggesting that secondary cyclizations of the bisabolyl
cation are catalyzed in pocket II (Köllner et al., 2006).

The formation of multiple products could also be a consequence
of more conformational flexibility in the active center allowing the
formation of more reaction intermediates and thus more products.
However, the short reaction times required by cationic cyclizations
might not provide sufficient time for larger conformational
changes of the intermediates (Vedula et al., 2005). Also, structural
elucidation of complexes consisting of trichodiene synthase and an
analog of the intermediate suggested the intermediates are present
in thermodynamically preferred conformations rather than those
expected from the course of the reaction mechanism (Christianson,
2006). Therefore, terpene synthase reactions are more likely to be
controlled by kinetic rather than thermodynamic processes (Vedu-
la et al., 2005). From this perspective, the formation of multiple
products is dependent on differences in substrate conformation
occurring at the very beginning of the reaction.

Further studies of terpene synthase structure and function are
clearly necessary to understand how these enzymes catalyze the
formation of multiple products. The availability of additional ter-
pene synthase structures will no doubt speed progress in this area
and facilitate further correlations between structural elements and
properties of the reaction. In this regard, identification of the ami-
no acid residues that interact with the termination steps of the cyc-
lic cascade would be particularly helpful. The increased
appreciation of theoretical methods would also be a welcome
development. Knowledge of the free energies of reaction interme-
diates, for example, should provide new insights on multiple prod-
uct formation.

The literature review for this article was completed in 2008.
However, in 2009 two reports appeared that require revision of
some basic assumptions about the universality of geranyl diphos-
phate (GPP) as a substrate for monoterpene synthases and the uni-
versality of farnesyl diphosphate (FPP = E,E-FPP) as a substrate for
sesquiterpene synthases. A tomato monoterpene synthase was de-
scribed that uses neryl diphosphate, the Z-isomer of GPP, as a sub-
strate instead of GPP (Schilmiller AL, Schauvinhold I, Larson M, Xu
R, Charbonneau AL, Schmidt A, Wilkerson C, Last R, Pichersky E
(2009) Monoterpenes in the glandular trichomes of tomato are
synthesized from a neryl diphosphate precursor rather than gera-
nyl diphosphate. Proc. Natl. Acad. Sci. USA 106, 10865–10870),
while a tomato sesquiterpene synthase was reported that uses
Z,Z-FPP instead of the usual E,E-FPP (Sallaud C, Ronstein D, Onillon
S, Jabès F, Duffé, Giagalone C, Thoraval S, Escoffer C, Herbette G,
Leonhardt N, Causse M, Tissier A (2009) A novel pathway for ses-
quiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the
wild tomato Solanum habrochaites. Plant Cell 21, 301-317). These
and other isomeric prenyl diphosphates may prove to be more
widespread substrates for the terpene synthase class.
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